Journal of Organometallic Chemistry, 86 (1975) C34–C36 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

CRYSTAL AND MOLECULAR STRUCTURES OF *cis*-DICHLOROBIS(TRI-FLUOROPHOSPHINE)BIS(TRIPHENYLPHOSPHINE)RUTHENIUM(II), *cis*-RuCl₂(PF₃)₂(PPh₃)₂, AND DICHLORO(2,7-DIMETHYLOCTA-2,6-DIENE-1,8-DIYL)(TRIFLUOROPHOSPHINE)RUTHENIUM(IV), RuCl₂(PF₃)(C₁₀H₁₆)

P.B. HITCHCOCK, J.F. NIXON* and J. SINCLAIR

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received December 19th, 1974)

Summary

The first structures of trifluorophosphine complexes of transition metals in an oxidation state greater than +1 are reported.

Although many transition metal complexes of trifluorophosphine have been characterised [1-3], very little structural work on them has been reported, and in no case are there details on complexes in which the oxidation state of the metal exceeds +1. In view of current interest [4, 5] in the nature of the metal phosphorus bond in transition metal phosphine complexes we have recently synthesised [6, 7] the complexes $\operatorname{RuCl}_2(\operatorname{PF}_3)_2(\operatorname{PPh}_3)_2$ (1) and $\operatorname{RuCl}_2(\operatorname{PF}_3)(\operatorname{C}_{10}H_{16})$ (II) [($\operatorname{C}_{10}H_{16} = 2,7$ -dimethyl-2,6-diene-1,8-diyl] in which the oxidation state of the ruthenium atom is formally +2 and +4, respectively. We describe below their molecular structures (Figs. 1 and 2) as determined by a single crystal X-ray crystallographic analysis.

I crystallises in space group $P2_1/n$, a special setting of $P2_1/c$. The unit cell has dimensions a = 18.540(8), b = 16.067(7), c = 12.415(5) Å and $\beta = 102.64(3)^{\circ}$. A final R factor of 3.4% was attained, based on 2310 significant reflections. II crystallises in space group C2/c with unit cell dimensions a = 12.575(10), b = 9.591(7), c = 12.051(9) Å and $\beta = 106.70(6)^{\circ}$. Refinement converged at R 3.9%, based on 1112 significant reflections.

In complex I the *cis*-arrangement of the two trifluorophosphine ligands within a slightly distorted octahedral structure confirms our previous suggestion based on NMR studies on the related dihydride complex [6]. The ruthenium triphenylphosphine distances are found to be 2.471 and 2.456 Å respectively, while the metal—trifluorophosphine bond lengths are very much shorter (2.180 and 2.160 Å). Standard deviations in Ru—P bond lengths are 0.002Å.

The structure of II is based on a trigonal bipyramid in which the axial posi-

Fig. 1. Molecular structure of the complex $RuCl_2(PF_3)_2(PPh_3)_2$.

Fig. 2. Molecular structure of the complex $RuCl_2(PF_3)(C_{10}R_{16})$.

tions are occupied by the chlorine atoms. The organic moiety which consists of a linear tail to tail dimer of isoprene occupies two of the equatorial sites and the third position is occupied by PF_3 . The trifluorophosphine molecule is totally disordered about a two-fold rotation axis along the metal--phosphorus bond.

The ruthenium—PF₃ bond distance in II is found to be 2.237(3) Å which, although significantly longer than the mean of the Ru—PF₃ distances found in I, is nevertheless at the short end of the range of Ru—P distances (2.2-2.4 Å) in other phosphineruthenium complexes [8-18].

References

- 1 J.F. Nixon, Advan. Inorg. Chem. Radiochem., 13 (1970) 363.
- 2 J.F. Nixon, Endeavour, (1973) 19.
- 3 Th. Kruck, Angew. Chem. Int. Ed. Engl., 6 (1967) 53.
- 4 A. Pidcock, in C.A. McAuliffe (Ed.), Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands, Chapter 1, Macmillan, London, 1973.
- 5 J.G. Verkade, Coord. Chem. Rev., 9 (1972/73) 1.
- 6 R.A. Heid, J.F. Nixon, J.R. Swain and C.M. Woodard, J. Organometal. Chem., 76 (1974) 393.
- 7 R.A. Head and J.F. Nixon, J. Chem. Soc. Chem. Commun., in the press.
- 8 S.J. La Placa and J.A. Ibers, Inorg. Chem., 4 (1965) 778.
- 9 C.G. Pierpont and R. Eisenberg, Inorg. Chem., 11 (1972) 1094.
- 10 A.C. Skapski and P.G.H. Troughton, Chem. Commun., (1968) 1230.
- 11 A.C. Skapski and F.A. Stephens, J. Chem. Soc. Dalton, (1974) 390.
- 12 A.J. Schultz, R.L. Henry, J. Reed and R. Eisenberg, Inorg. Chem., 13 (1974) 732.
- 13 J.V. McArdle, A.J. Schultz, B.J. Carden and R. Eisenberg, Inorg. Chem., 12 (1973) 1676.
- 14 G. Chioccola and J.J. Daly, J. Chem. Soc. A, (1968) 1981.
- 15 N.W. Alcock and K.A. Raspin, J. Chem. Soc. A, (1968) 2108.
- 16 K.A. Raspin, J. Chem. Soc. A, (1969) 461.
- 17 R. Mason, K.M. Thomas, D.F. Gill and B.L. Shaw, J. Organometal. Chem., 40 (1972) C67.
- 18 A.E. Smith, Inorg. Chem., 11 (1972) 2306.